

A scalable and practical

privacy-preserving framework

Hardware Acceleration

GPU Acceleration for Fully Homomorphic Encryption

Why GPU for FHE?

- FHE is secure but computationally intensive
- GPUs excel at parallelism → ideal for speeding up FHE
- No existing GPU support for BGV in OpenFHE \rightarrow we fill that gap

Metric	Description
Speedup	4.58×
End-to-End Speedup	1.08× (depth 24)
Throughput Gain	+16%
Bottleneck at Low Depths	Data transfer & marshaling

What we Did?

- Profiled OpenFHE → identified
 Enabled 128-bit integer support bottlenecks
 - Integrated seamlessly into OpenFHE
- Offloaded code to GPU
- Reduced data transfer cost using batch

Repository

Open Source

In addition, this work is funded by UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee for grant number 10039809.

Key Takeaways

- Best suited for deep FHE workloads
- Modular integration with OpenFHE
- Data movement optimization is key
- Enables real-world GPUsecure computing

This work is supported by the European Union's Horizon Europe programme under grant agreement No 101070670.